Optimising Electronic Standard Cell Libraries for Variability Tolerance Through the Nano-CMOS Grid

نویسندگان

  • JAMES ALFRED WALKER
  • RICHARD SINNOTT
  • JAMES A. HILDER
  • GORDON STEWART
  • ANDY M. TYRRELL
چکیده

This paper describes an approach to optimise transistor dimensions within a standard cell library. The goal is to extract high-speed and low-power circuits which are more tolerant of the random fluctuations that will be prevalent in future technology nodes. Using statistically enhanced SPICE models based on 3D-atomistic simulations, a Genetic Algorithm optimises the device widths within a circuit using a multi-objective fitness function. The results show the impact of threshold voltage variation can be reduced by optimising transistor widths, and suggest a similar method could be extended to the optimisation of larger circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing electronic standard cell libraries for variability tolerance through the nano-CMOS grid.

The project Meeting the Design Challenges of nano-CMOS Electronics (http://www.nanocmos.ac.uk) was funded by the Engineering and Physical Sciences Research Council to tackle the challenges facing the electronics industry caused by the decreasing scale of transistor devices, and the inherent variability that this exposes in devices and in the circuits and systems in which they are used. The proj...

متن کامل

Statistical Characterization of Standard Cells for Variation Aware Delay Modeling

With the advance in CMOS VLSI circuit design through technology scaling, process variability has significantly increased uncertainties in the response of sub-45nm CMOS circuits. To address this challenge and obtain reliable fabricated chips, statistical timing analysis and library characterization tools have become significantly important. CPU-time intensive Monte Carlo (MC) simulations embedde...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Optimized Standard Cell Generation for Static CMOS Technology

Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...

متن کامل

Optimized Standard Cell Generation for Static CMOS Technology

Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010